Final Examination, 10 May 1999 SM311O (Spring 1999)

The following formulas may be useful to you:

$$a) \oint_{C} \mathbf{v} \cdot d\mathbf{r} = \int \int_{S} \nabla \times \mathbf{v} \cdot d\mathbf{A},$$

$$b) \rho(\frac{\partial \mathbf{v}}{\partial t} + \nabla \mathbf{v} \cdot \mathbf{v}) = -\nabla p + \mu \Delta \mathbf{v} + \rho \mathbf{F}, \quad \text{div } \mathbf{v} = 0.$$

$$c) -fv = -\frac{1}{\rho} \frac{\partial p}{\partial x} + A_{V} \frac{\partial^{2} u}{\partial z^{2}}, \quad fu = -\frac{1}{\rho} \frac{\partial p}{\partial y} + A_{V} \frac{\partial^{2} v}{\partial z^{2}}, \quad 0 = -\frac{1}{\rho} \frac{\partial p}{\partial z} - g.$$

- 1. (a) Let $\mathbf{v} = \langle xy, a\sin(zy), z\sqrt{x}\rangle$ where a is constant. Determine a so that the divergence of \mathbf{v} vanishes at the point $P = (4, -1, \frac{\pi}{6})$.
 - (b) Let $\mathbf{v} = \langle y^2, -x^2, 0 \rangle$. Find the curl of \mathbf{v} . Is this flow irrotational anywhere?
 - (c) Prove the identity $\nabla \times \nabla \phi = \mathbf{0}$ if ϕ is an arbitrary function of x, y, and z.
- 2. Verify by direct differentiation if
 - (a) $u(z) = e^{2z} \cos 2z$ is a solution of $u'''' + a^2u = 0$ for any a.
 - (b) $u(x,y) = \sin x \cos 2y$ is an eigenfunction of the Laplace operator $-\frac{\partial^2}{\partial x^2} \frac{\partial^2}{\partial y^2}$. What is the eigenvalue?
- 3. (a) Give a parametrization for the plane that passes through the points (-1, 1, 0), (0, 2, 2), and (1, 0, 1).
 - (b) Find a unit normal vector to the surface of the upper hemisphere of the Earth at the point whose longitude and latitude are 60 and 30 degrees, respectively.
- 4. (a) The function $\phi(x,y) = ax^2y^2 by^2 + x$ is the potential for a velocity vector field **v**. Determine the values of a and b so that the velocity of the particle located at (2,-1) is zero.
 - (b) The function $\psi(x,y) = ax^2 + xy + by^2$ is the stream function of a velocity field **v**. Find a and b so that the velocity of the particle located at (1,1) has magnitude $\frac{1}{2}$.
- 5. (a) Consider the velocity field $\mathbf{v} = x^2 z \mathbf{k}$. Determine the flux of this fluid through the following two surfaces:
 - i. a disk of radius 1 in the xy-plane and centered at the origin.
 - ii. a disk of radius 1 in the plane z = 1 and centered at the origin.
 - (b) Compute the flux of vorticity of $\mathbf{v} = y^2 \mathbf{i}$ through the surface of the upper hemisphere of a sphere of radius 2 centered at the origin (Hint: Use the Stokes Theorem).

6. Consider the following heat conduction problem:

$$u_t = 7u_{xx},$$
 $u(0,t) = u(3,t) = 0,$ $u(x,0) = x(3-x).$

- (a) Use separation of variables and find the solution to this problem. Clearly indicate the process of separation of variables and the Fourier Series method used in obtaining this solution.
- (b) Use the first nonzero term of the above solution and estimate how long it takes for the temperature at x = 1.5 to reach 50 per cent of its original value.
- 7. Let $\mathbf{v} = \langle x^2 + y^2, 2xy \rangle$ be the velocity field of a fluid. Compute the acceleration \mathbf{a} of this flow. Does \mathbf{a} have a potential p? If yes, find it.
- 8. Let Ω stand for the angular velocity of our planet.
 - (a) Noting that our planet rotates once every 24 hours, compute Ω where $\Omega = \langle 0, 0, \Omega \rangle$. What are the units of Ω ?
 - (b) Use this value of Ω and estimate the values in the centripetal acceleration $\Omega \times (\Omega \times \mathbf{r})$ where \mathbf{r} is the position vector to a typical point on the surface of the Earth. Assume that the radius of the Earth is 6000 kilometers.
- 9. Consider an incompressible fluid occupying the basin

$$D = \{(x, y, z) | 0 \le z \le H\}.$$

Let $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ be the velocity field of a motion generated in D. Suppose that we have been able to determine that

$$v_1(x, y, z) = x^2 y^2, \quad v_2(x, y, z) = -3x^2 z,$$

but have only succeeded in measuring v_3 at the bottom of the basin and that this value is

$$v_3(x, y, 0) = x + y.$$

Determine v_3 everywhere in D. (Hint: What does incompressibility mean **mathematically**?)

10. A flow is called geostrophic if the velocity $\mathbf{v} = \langle u(x,y), v(x,y) \rangle$ and the pressure gradient ∇p are related by

$$(*) -fv = -\frac{1}{\rho} \frac{\partial p}{\partial x}, fu = -\frac{1}{\rho} \frac{\partial p}{\partial y},$$

where ρ , a constant, is the density of the fluid, and f is the coriolis parameter.

- (a) Assuming that f is constant, prove that the divergence of \mathbf{v} must vanish.
- (b) Prove that the particle paths of a geostrophic flow and its isobars coincide.
- (c) Consider a high pressure field in a geostrophic flow in the northern hemisphere (where f > 0). By appealing to the equations in (*) explain whether this high pressure field results in a clockwise or a counterclockwise motion.